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Series study of the one-dimensional ‘true’ self-avoiding walk 
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Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 12 January 1984, in final form 7 March 1984 

Abstract. The ‘true’ self-avoiding walk problem is formulated using a grand canonical 
approach, and exact enumeration methods are used to calculate the average end-to-end 
distance for one-dimensional ‘true’ self-avoiding walks with up to 21 steps. The results 
are in agreement with a universality picture obtained both from Monte Carlo simulations 
and from scaling and crossover arguments. The extrapolated value of the end-to-end 
distance exponent Y is U = 0.67 i0.04. 

1. Introduction 

Among the problems currently under study in the context of lattice statistics, the ‘true’ 
self-avoiding walk (TSAW), recently introduced by Amit et a1 (1983), is one that exhibits 
some unusual features. The TSAW is defined as the problem of the traveller who steps 
at random but tries to avoid sites that have already been visited. It is quite different 
from the usual ‘self-avoiding walk’ (‘self-repelling chain’ (SRC) in the terminology of 
Amit et a1 (1983)), which is a random walk with no self-intersections allowed, well 
known as a model for the configurations of polymers in good solvents (see e.g. de 
Gennes 1979). Indeed TSAWS and SRCS differ in their critical exponents and even in 
their upper critical dimensionalities d,  ( d ,  = 2 from the TSAW while d,  = 4 for the SRC 

(de Gennes 1979)), in the absence or presence of configurations which trap the traveller 
and in the number and stability of fixed points displayed in their respective phase 
diagrams (de Queiroz er a1 1984, see also below). 

The problem is defined as follows (Amit et a1 1983): on a lattice, the traveller has 
to move to one of the z nearest neighbours of the site he is at. The probability Pi of 
moving to a point i depends on the number of times n, this site has already been visited: 

The parameter g defines the strength with which the walk avoids itself (g > 0). Two 
remarks are worth making: 

(i) At each step, all the past history of the walk enters into the determination of 
the probability distribution ; this extremely complicated, non-Markovian, nature of the 
TSAW is actually the feature that makes it distinct from other problems, as we shall 
see below. 

+ Present and permanent address: Dipartimento di Fisica e Unitl GNSM del CNR dell’ Universita di 
Padova, Padova. Italy. 
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0305-4470/84/091903 + 10$02.25 @ 1984 The Institute of Physics 1903 



1904 A L Stella et a1 

(ii) For g = 0 one recovers the ordinary random-walk (RW), for all space dimension- 
alities; on universality grounds we expect the asymptotic behaviour to be the same for 
every finite, non-zero g. For instance the average end-to-end distance for an N-step 
walk, ( R  N) , must scale as N",  v being the same for every g > 0 at a given dimension, 
and different from the random-walk value ( v = $) for d < d ,  = 2.  As regards point (ii) 
above, Pietronero (1983) indeed obtained from a self-consistent approach to the TSAW 

both d ,  = 2 and an explicit, approximate expression for v, valid for every finite, non-zero 
g and d s 2, namely: 

2 1/2  

v = 2 / ( d  + 2 )  d s 2 .  ( 2 )  

The above expression is a reminder that even in one dimension the TSAW is 
non-trivial: it gives in this case U = &  different from both the one-dimensional SRC 

exponent, v = 1 (McKenzie 1976) and the random-walk exponent ( v  =;). This result 
is in good agreement with Monte Carlo simulations, performed in I D  respectively for 
g = 0.1, 1 .O and 3.0 (Bernasconi and Pietronero 1983), where the authors find an overall 
picture consistent with v = 0.67 * 0.01 for all three values of the repulsion parameter. 

This universality picture has been independently supported by the scaling and 
crossover arguments for the I D  TSAW of de Queiroz et a1 (1984). Therein, it is recalled 
that only in I D  is the g+m limit of the TSAW the SRC (in higher dimensionlities this 
equivalence does not hold, because 'self-trapped' configurations which are dead ends 
for SRCS have a way out in the TSAW case, as can be seen from normalisation condition 
(1) above); with x = e-', the crossover between TSAW and SRC (x - 0) is given special 
attention. The random-walk limit (x + 1) is discussed as well, the resulting renormalisa- 
tion group flow diagram being consistent with the existence of an attractive fixed point 
located at some x, between zero and one. This then implies that the exponent for the 
TSAW in I D  is the same for any finite, non-zero value of the repulsion parameter g. 

In  the present work we make use of series analysis both to discuss the numerical 
value of the exponent v for the TSAW in one dimension and to check the consistency 
of the universality picture sketched above; this in turn enables us to comment on the 
specific features of series calculations for this problem, where crossover phenomena 
occur. We also comment on the relationship between the very peculiar way in which 
probability distributions are built for the TSAW and uncertainties in Monte Carlo and 
series results. In § 2 we discuss a grand-canonical formulation for the TSAW problem; 
in § 3 the results obtained from series are presented; in § 4 we discuss the influence 
of crossover and finite-size probability distribution on our results, comparing them 
with those obtained from Monte Carlo simulations ; finally, concluding remarks are 
presented. 

2. Grand-canonical formulation 

In this section we get into details of the scheme outlined in de Queiroz et a1 (1984), 
pointing out its generalisations and limitations. 

We denote a generic walk by a, N ,  being its number of steps and (R;)''' its 
end-to-end distance. Each walk will have an intrinsic probability, given by the product 
of the probabilities for each of its steps, and depending on x = e-g: 

" 
(3) P(a, x) = n Pi 

t = I  
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where the P, are given by ( I )  above. The condition that at the N t h  step the traveller 
has to be somewhere reflects itself in the normalisation: 

for any fixed N. 
In order to formulate the problem in terms of a grand-canonical ensemble, we 

associate a fugacity K to each step of a walk (Shapiro 1978, de  Gennes 1979). A walk 
a must have its weight W, depending both on its intrinsic probability P(a,  x )  and on 
its number of steps, so we write: 

W, = W ( a ,  x ) K ” n .  ( 5 )  

Further, we choose to write W ( a ,  x )  as: 

W ( a ,  x )  = P(a ,  x ) l  P(%“, x) (6) 

where P(a,,,, x )  is the intrinsic probability of the walk a,,, with the same number 
of steps as cy and maximal end-to-end distance (for any lattice with inversion symmetry, 
this means (R~m,~x)”2  = N, in lattice parameter units). The choice is sensible because: 

( i )  It is certainly desirable that W ( a ,  x )  be proportional to P ( q  x ) .  
(ii) In the random-walk limit ( x  = l) ,  W ( a ,  I ) =  1 for every walk so the usual 

random-walk statistics is recovered. 
(iii) In the limit x + O ,  it is only in one dimension that the SRC limit is recovered, 

again with the usual weights (weight one for a walk without self-intersections and zero 
for one with any number of self-intersections). For d > 1 the statistics of TSAWS with 
x = 0 is known to differ from that of SRCS (Pietronero 1983, de  Queiroz et a1 1984) and  
this fact reflects itself in that, with the above choice of weights: 

( a )  ‘Self-trapped’ configurations, which are dead ends for SRCS are not for TSAW. 
So, e.g., in figure l ( a )  the TSAW can proceed with further steps from point A without 
the weight becoming zero as in the SRC case. 

( b )  Non-intersecting configurations where nearest-neighbour site-s are visited not 
sequentially, which have weight one for SRCS, have a weight # 1 for TSAWS. For instance 
in figure l (b)  the step B + C has a probability ( 2  + 2 x ) - ’ ,  because A has already been 

L t 
( U )  ibl 

Figure 1. ( a )  This ‘self-trapped’ configuration is a dead end for SRCS, whereas for a TSAW 

the traveller can proceed to either I ,  2, 3 ,  or 4 with equal probability. ( h )  This configuration 
has weight one for SRCs;  for TSAWS the fact that A has been visited modifies the probability 
of the step B - C  (see text), leading to a weight different from one. 
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visited; this is different from the probability (3 +x)-’ for any step but the first in a,,, 
on a square lattice. Sensible as it is, the choice of weights given by equation (6) has 
some definite consequences as regards the ‘susceptibility’ exponent y, defined in analogy 
with the SRC case (McKenzie 1976, de Gennes 1979) as related to the divergence of 
the grand canonical generating function: 

G(x, K ) = x  W(a, X ) K ’ ~ “ - ( K , ( X ) - K ) - ~ ,  K + K , ( x ) -  
N a, M ,  = N 

(7) 

where K,(x) is a lattice- and x-dependent quantity. The assumption of (7) implies 

c W ( a ,  x) - K,(x)- % I v y - ’  ( N + W ) .  
a, Vct = \ 

On the other hand, it is easy to see from normalisation condition (4) and definition 
(6) that, if z is the number of nearest neighbours of a site: 

c W ( a , x ) = z ( z - 1  +x)- (9 )  
0, v,, = h 

where account has been taken of the fact that one has z equally probable choices for 
the first step of an amax walk, and  each subsequent step of the amd, path has probability 
(z - 1 +x ) - ’ .  Equation (9) then implies that 

y =  1 :  K , ( x ) = ( z -  1 +x)- ’  (10) 

for any space dimensionality. These results deserve a few comments. 
In  polymer literature, the inverse of K ,  is termed ‘connective constant’, its value 

giving an  average of the number of alternatives available for each next step: the factor 
NY-’ in the expression analogous to equation (8) is the ‘enhancement factor’ (de 
Gennes 1979), reflecting the fact that for an  SRC the condition of non-intersection 
‘pushes’ the chain into regions of lower local density. A unitary value of y and the 
corresponding absence of the enhancement factor would then be related to the applica- 
bility of a mean-field picture. 

In the present case, although equation (10) gives K,(l)= z - ’  which is the correct 
connective constant for a random walk, the interpretation of K,(x) for x <  1 as a 
connective constant is less obvious, because different walks have different intrinsic 
weights, depending on all details of their past history even in the case x = 0. 

The unitary value of y in all dimensions simply follows from the definition of 
weights (6) above. Whether it is a ‘real’ susceptibility exponent (in the same sense as 
the y exponent of the generating function of SRCS is the susceptibility exponent of the 
zero-component classical vector model (de Gennes 1979)) is a matter that could be 
made clear if a correspondence could be drawn between the TSAW and a magnetic 
problem, in the spirit of the isomorphism between SRCS and the zero-component vector 
model. This ‘magnetic’ aspect of the problem must be more carefully studied. However 
it must be noticed that in one dimension the unitary value of y can be understood on 
purely geometric grounds, while for d 5 2 i t  is again correct that y = I ,  this time because 
the critical dimensionality is two. 

Throughout this work we shall make use of definition (6) above, its limitations as 
pointed out in the preceding paragraphs being of no importance here because we 
restrict ourselves to the ‘thermal’ aspects of the one-dimensional problem. As we try 
to make clear below, the essential ingredient that distinguishes the geometrical proper- 
ties of the TSAW from those of other problems is the infinite-range, cumulative, memory 
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effect; provided that it is incorporated in a sensible way (which equation (6) certainly 
does), one can properly address questions such as the distribution of end-to-end lengths. 

3. Series results 

In this section we report the results of series calculations for the TSAW in one dimension, 
in which walks of up  to 21 steps were taken into account; the weights used were those 
defined in equation (6).  Several values of the repulsion parameter x were considered, 
namely x = 0.1, 0.3, 0.4, 0.5, 0.6, 0.7 and  0.9. We considered the attractive case ( x  > 1 )  
as well, having found out that the walk is self-trapping for all x >  1 (as could be 
expected on intuitive grounds). We shall not comment further on the attractive case; 
instead we concentrate on what was found for 0 < x < 1. 

For each value of N( 1 c N c 21) and x (as quoted above) we calculated, through 
exact enumeration, the average both of the absolute value of the end-to-end distance 
( I R N ( x ) l )  and the square of the end-to-end distance ( R L ( x ) ) .  These are given by 

and analogously for ( R L ( x ) ) .  From (9) above one has Cm,N,=N W ( a , x ) = 2 ( 1  + x y  
in the one-dimensional case: in table 1 we display the values of (1RN(x)I)  for x = 0.1, 
0.3, 0.5, 0.7 and 0.9; table 2 shows ( R X ( x ) )  for the same values of x.  

We have analysed our data in two different ways: one is the classical ratio method; 
the second is an analysis of moments based on the assumption of a particular scaling 

Table 1. The values of ( IR+(x) I )  for N s 2 1  and x = O . I ,  0.3, 0.5, 0.7 dnd 0.9. 

x 0. I 0.3 0.5 0.7 0.9 
N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1.000 000 
1.818 182 
2.652 893 
3.418 185 
4.190 593 
4.9 I O  256 
5.634 967 
6.3 I3 542 
6.996 168 
7.638 025 
8.283 594 
8.892 789 
9.506 408 

10.087 304 
10.672 814 
11.228 574 
I 1.789 385 
12.323 002 
12.861 938 
13.375 927 
13.895 414 

I.000 000 
1.538 462 
2 .  I83 432 
2.694 709 
3.250 192 
3.726 975 
4.230 464 
4.676 756 
5.144072 
5.564 540 
6.004 407 
6.403 85 I 
6.821 733 
7.204 08 I 
7.603 980 
7.971 622 
8.356 256 
8.71 1 259 
9.082 596 
9.426 504 
9.786 164 

1.000 000 
1.333 333 
I .888 889 
2.237 037 
2.692 840 
3.025 844 
3.429 849 
3.747 255 
4.119441 
4.422 575 
4.772 131 
5.063 101 
5.394 938 
5.675 538 
5.992 979 
6.264 534 
6.569 931 
6.833 513 
7. I28 567 
7.385 055 
7.671 063 

1.000 000 
1 .  I76 47 1 
1.692 042 
1.894 044 
2.295 57 1 
2.499 166 
2.844 969 
3.044 860 
3.356 417 
3.551 463 
3.839 577 
4.029 595 
4.300 228 
4.485 587 
4.742 47 I 
4.923 556 
5.169212 
5.346 387 
5.582 624 
5.756 214 
5.984 387 

I.000 000 
1.052 632 
1.554 017 
1.618 320 
1.995 975 
2.064 905 
2.381 129 
2.452 164 
2.730 250 
2.802 229 
3.053 788 
3. I26 107 
3.357 893 
3.430 2 16 
3.646 554 
3.7 I8 688 
3.922 536 
3.994 367 
4. I87 853 
4.259 3 I5 
4.444 029 
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Table 2. The values of ( R t ( x ) )  for N S 21 and x = 0.1, 0.3, 0.5, 0.7 and 0.9. 

0.3 0.5 0.7 0.9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

1.000 000 
3.636 364 
7.61 1 570 

12.846 888 
19.226 479 
26.714 104 
35.192281 
44.630 58 I 
54.930 787 
66.07 I 453 
77.965 485 
90.602 I19 

103.902 489 
117.864016 
132.415 302 
147.559 026 
163.230 916 
179.438 3 1 5  
196.121 406 
213.292 070 
230.894 628 

I.000 000 
3.076 923 
5.733 728 
9.030 746 

12.801 790 
17.129893 
2 1.824 61 5 
26.98 I 943 
32.453 3 I O  
38.3 18 849 
44.460 57 I 
50.949 896 
57.684 608 
64.732 573 
72.004 241 
79.558 952 
87.3 I9 986 
95.341 208 

103.552 478 
1 12.005 368 
120.634 937 

1.000 000 
2.666 667 
4.555 556 
6.844 444 
9.351 605 

12.188313 
15.189 740 
18.479 332 
21.912 758 
25.593 648 
29.407 725 
33.440 568 
37.595 379 
41.948 610 
46.4 I4 6 14 
51.062 073 
55.815 318 
60.735 837 
65.756 034 
70.93 I 896 
76.201 870 

1.000 000 
2.352 941 
3.768 166 
5.41 6 420 
7.140 128 
9.046 576 

I 1.017 903 
13.148 142 
15.333 837 
17.660 653 
20.038 351 
22.542 267 
25.094 403 
27.761 000 
30.473 446 
33.291 177 
36. I52 540 
39.1 I 1  735 
42.1 12 627 
45.205 057 
48.337 531 

I.000 000 
2. I05 263 
3.216066 
4.402 990 
5.597 767 
6.854 083 
8.1 18 554 
9.435 945 

10.761 142 
12.133 436 
13.513 I I5 
14.935 554 
16.365 038 
17.833 857 
19.309 465 
20.821 610 
22.340 349 
23.893 286 
25.452 659 
27.044 244 
28.642 I27 

form for the end-to-end length distribution, proposed by McKenzie and Moore (1971) 
for SRCS. 

Although the results obtained through both procedures show a certain amount of 
spread, they give strong support to the universality picture of Bernasconi and Pietronero 
(1983) and  of de  Queiroz et a1 (1984). 

3.1. Classical ratio method 

Assuming, for large N 

(lRY(X)l) = A , ( x ) N ” ,  (R$(x)) = A,(x)N?” (12) 

where we expect v to be the same for every 0 < x < 1, one has 

where the ratios are taken between terms of the same parity in order to eliminate the 
characteristic even-odd fluctuations that occur in loose-packed lattices (Watts 1974). 
From (13) one obtains the following estimates, which will depend on N and x (the 
x-dependence being implicitly understood from now on): 

vhl = l n ( ( l R , ~ - ~ l ) / ( l ~ ~ l ) ) / ~ ~ ( ~  + 2 / N )  (14a) 

v,, = t  In( (Ri+2) / (RL)) / In( i  + 2 / ~ ) .  ( 1  46) 
The values of vbr found from (R’) series using (14b) are displayed against 1 /N in 

figure 2 .  
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A qualitatively similar behaviour was found for vN from (]RI) series. The curvature 
of the v x 1 /  N plots increase as one approaches either the x + 0 or the x + 1 limit: the 
straightest plots are for x = 0.5 to 0.7. This is consistent with the existence of two 
crossovers (RW + TSAW at x = 1 and SRC + TSAW at x = 0) and with the location of the 
inferred fixed point on the phase diagram of de Queiroz et a1 (1984) at x, around 
-0.5-0.7. The generally high degree of curvature evident from figure 2 requires that 
care be taken in forming infinite-N extrapolants. Neville tables (see e.g. Gaunt and 
Guttman 1976) formed from the data indeed show considerable scatter. This is reflected 
in the errors in table 3, where we display the estimates of v obtained using Neville 
tables, for several values of x and for ( R 2 )  and (I RI) series. The results in table 3 are 
consistent with the I D  TSAW being in the same universality class for any x in the range 
0 < x < 1 : our overall estimate for v is 

v = 0.69 * 0.03 (15) 

where the error bar reflects the scatter of the central estimates in table 3. 

Table 3. The values of U as from the ratio method; obtained, for each x, from Neville tables. 

0.1 0.64 f 0.05 0.66 i 0.04 

0.4 0.69 * 0.04 0.68 i 0.03 
0.3 0.68 i 0.04 0.68 i 0.04 

0.5 0.70 f 0.03 0.68 i 0.03 
0.6 0.7 1 * 0.02 0.70 * 0.02 

0.9 0.65 i 0 . 0 4  0.66 i 0.03 
0.7 0.70 * 0.03 0.70 i 0.03 

As a check on the above analysis, and in order to discuss the scaling properties of 
the TSAW, in the range 0 < x < 1, we have performed the alternative analysis described 
below. 

3.2. Analysis of moments of the distribution 

In a paper on polymer statistics, McKenzie (1973) points out that, if the end-to-end 
probability distribution of a self-repelling chain has the asymptotic form (McKenzie 
and Moore 1971) 

P N ( r ) - ( r / R N ) g  exp{-(r/RN)S), r >> RN (16) 

where RN - N ”  is a scaling length and P N ( r )  is the probability that an N-step walk 
start at the origin and end at r, then 6 = (1 - Y ) - ’  and g = [ d ( v  -f) + 1 - y]/(l - Y )  

(McKenzie and Moore 1971), where d, Y and y are respectively space dimensionality, 
‘correlation length’ and ‘susceptibility’ exponents. In this case the ‘reduced moment’ 
ul( N )  defined by 

(17) 

must approach a well defined value ul as N + 03, as a consequence of the existence 

2 1 / 2  ut(N) E ( R h ) / ( R  N )  
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Figure 2. Plot of v, against 1,” for R’ series. Figure 3. Plot of v, against 1/ N as from the moment 
analysis. Only odd terms are used in order to avoid 
even-odd oscillations. 

of a single scaling length; from (16) this value can be deduced to be: 

U, = 

(McKenzie 1973). 
If we assume that a probability distribution of the form (16) holds in our case as 

well, and  recall that y = 1 in d = 1 ,  we can use our data on ( / I t N / )  and  (It%) to obtain 
estimates of 

(19) (.: = [r(; - v)]2/[r(;)r($ - h)] 

and from these infer the value of v. 
The values of vN found from (17) and  (18), for odd  N and several values of x, are 

plotted against 1/N on figure 3. The overall behaviour is similar to that found using 
ratio analysis (see figure 2). However, there is a systematic shift to smaller values of 
v and the spread of the v N  estimates on varying x is somewhat smaller. Neville tables 
are again used to extrapolate the data. The results are displayed in table 4. As in the 
ratio analysis, there is some scatter in the Neville tables, as well as variation with x, 
especially for x near 0 and  1. From these results we estimate v in the range 0 < x < 1 
to be 

v = 0.65 f 0.03 (20) 

where the error bar reflects the scatter of the central estimates in table 4. This result 
is lower than, but still consistent with (15). This in turn enables us to state that a 
scaling form as (16) above provides a reasonable representation of the asymptotic 
behaviour of the I D  TSAW, at least for O<x < 1. 



Series study of I D  ‘true’ self-avoiding walk 191 1 

Table 4. The values of v as from the moment analysis; obtained, for each x, from Neville 
tables. 

X v 
~ ~~ 

0. I 0.62 * 0.04 
0.3 0.64 * 0.03 
0.4 0.65 * 0.03 
0.5 0.65 * 0.03 
0.6 0.65 * 0.02 
0.7 0.65 ~t 0.02 
0.9 0.60 * 0.03 

4. Discussion 

The results for v found from our series expansions are consistent both with the Monte 
Carlo results of Bernasconi and Pietronero (1983) and  with the value of 3 found by 
Pietronero (1983). Indeed the moment analysis of $3.2, suggests that: (i) a scaling 
form PN( r )  - ( r /  R y ) g  x exp{ -( r /  RN)’} holds asymptotically, which is one of 
Pietronero’s assumptions; and (ii) the value v = 5, which yields g = f and S = 3, is 
consistent with our results. 

Despite this agreement the uncertainties encountered in series extrapolations for 
the TSAW are larger than those encountered in studies of SRCS. For instance the ZD 
exact enumeration data of Grassberger (1982) shows that at N = 2 I one is already 
within -0.5% of the final extrapolated results, and  that the curvature in the v N  data 
is rather small. Typical estimated deviations of about 0.5% are found also in shorter 
series calculations of exponents for SRCS both in two and three dimensions (Martin 
and  Watts 1971, McKenzie 1973, Watts 1974). Although not directly related to our 
problem, the ‘spiral self-avoiding walk’ of Privman (1983) shows a greater irregularity 
in the behaviour of the series, with a spread of -10% in v and 25% in y from a 
40-term series calculation. 

Concerning Monte Carlo studies of SRCS, a fractional spread of about 6.5% is 
usually obtained from I O  000-step walks (in two dimensions, Havlin and  Ben-Avraham 
(1983) quote v = 0.753 * 0.004 with this number of steps). On the other hand, Bernasconi 
and Pietronero (1983) felt it was necessary to go to 200 000 Monte Carlo steps in the 
I D  TSAW in order to make sure they could claim a fractional deviation of about 1% 
in their result. 

The slow convergence of the series and Monte Carlo calculations for the I D  TSAW, 
we suggest, is due to two effects: 

(i) The complicated, cumulative memory effects that appear in the walk weights 
(equation (1)). These effects make the attainment of a reasonably stable probability 
distribution more difficult than for example in the problem of self-repelling chains. 

(ii) The presence of two crossovers in the problem. In order to check how these 
effects are smoothed out with increasing number of terms, it would be useful to analyse 
extended TSAW series, in one dimension (where both effects occur) as well as in 
dimensionalities greater than one (where this double crossover will not be present, but 
effect (i) will be). Preliminary results obtained in one dimension by Dekeyser (1984) 
confirm the overall picture obtained above. 
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In conclusion, our series study of the I D  TSAW confirms the universality picture of 
Bernasconi and Pietronero (1983) and of de Queiroz et  a1 (1984). We estimate v to 
be I, = 0.67 f 0.04 and suggest that the intermediate fixed point is located at x, = 0.6 * 0.1. 
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